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Abstract 

 The purpose of the study is to analyze and predict the National Stock Exchange (NSE) Index. For Investors, who are seekers of 
Capital Appreciation, trend analysis and predictionare very essential. Therefore, investors, whether retail or institutional, must predict 
the trend of the stock market where the investments have been made to create wealth. The study uses the Markov Chain Model over a 
period from 3rd February 2020 to 29th January forming, 247 days of trading data from the official website of the NSE. The NSE Index 
shows three different states - Increase, Unchanged and, Decrease. The Markov Chain model is a probability model based on the 
transition probability matrix and initial state vector. The transition probability metric has been obtained by observing the number of 
transitions from one state to another. The study explores that in the long run, regardless of the current state of the NSE index, the 
probability of index increase, unchanged, and decrease are 42.29%, 32.87%, and 24.84 %, respectively. If the closing value of the NSE 
index is in the state Increase on day one, then it can be expected to return to the state increase for the first time in two days or on the 
third day.   
Keywords: markov chain; trend analysis; prediction; transition probability matrix; indian stock market.  
 
Introduction 

The Stock Market is a barometer of any economy. The 

Stock market plays a significant role in the life of Investors 

with the sole objective of making a profit by investing in 

different shares of listed companies.  The Stock market is 

the legal platform where such shares are traded. And 

according to the performance of the company, the price of 

the shares grows up or down in the stock market. Apart 

from the performance of the company, worldwide trend of 

business, natural calamities, the sociopolitical policy, 

global market conditions also affect the stock market. 

Therefore, there lies the significance of stock market 

prediction, which may benefit an investor. Various scientific 

methods are implemented for stock market prediction 

through the analysis of past information. Investors in the 

stock market are interested to know the future occurrence 

of the market as they are motivated by the desire for 

capital appreciation. However, the fluctuating nature of the 

stock market makes the analysis and prediction a 

complicated phenomenon and making accurate prediction 

of the stock market by any single method a very difficult 

task. Different methods such as Machine Learning, Neural 

Network, Moving Average, Regression Analysis, ARIMA, 

Data Mining, MarkovChain analysis, Hidden Markov model 

are used by different researchers to forecast the stock 

market.  

 
Review of Related Work 

Prediction is the method where we find the future value on 

a specific field with the help of the past data records and 

conclude the specific result. There are several fields where 

prediction is used, and various prediction methods have 

been proposed and implemented.  These methods range 

from Machine Learning (Jigar Patel, Sahil Shah, Priyank 

Thakkar, and K Kotecha; David Enke and Suraphan 

Thawornwong),Neural Network (Manna Majumder and MD 

Anwar Hussian; Akintola K.G., Alese B.K. and Thompson 

A.F.; Sneha Soni; Tiffany Hui-Kuang and Kun-Huang 

Huang; R.K. and Pawar D.D.; Halbert white; Jing Tao Yao 

and chew Lim tan; Riki Herliansyah and Jamilatuzzahro), 
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Moving Average [MA] method (Abdulsalam Sulaiman 

Olaniyi, Adewole, kayoed s, Jimoh R.G),Data mining 

techniques (M. Suresh Babu, N. Geethanjali and B. 

Sathyanarayana; Y.L. Hsieh, Don-Lin Yang, and Jungpin 

Wu; K. Senthamarai Kannan, P. Sailapathi Sekar, 

M.Mohamed Sathik and P. Arumugam),Hidden Markov 

Models (HMM) (Md. Rafiul Hassan and Baikunthu Nath, 

Kavitha G, Udhayakumar A, and Nagarajan D),Moving 

Average Autoregressive Exogenous (ARX) prediction 

model (Kuang Yu Huang, Chuen-Jiuan Jane),ARIMA 

model and vector ARMA model with fuzzy time series 

method (Hsien-Lun Wong,Yi-Hsien Tu and Chichen Wang; 

Swapnil Jadhav, Saurabh Kakade, Kaivalya Utpat, Harshal 

Deshpande) to Markov Chain Approach. 

 The Markov Chain Model has been used by many 

researchers to predict and analyze the trend of the stock 

market at different times. 

 Styan, George P. H. and Smith, Harry Jr. (1962) used 

market behavioral analysis data provided by the 

transitional or switching, habits of the consumer. They had 

taken types of laundry powder purchased by a housewife 

to define the state space of a Markov chainand predicted 

the future purchase behavior and statistical inferences on 

the switching habits. Zhang, Deju and Zhang, Xiaomin 

(2009) applied the Markov process model for the Chinese 

stock market trend forecasting and concluded that the 

operational status of the stock market is subject to the 

impact of various factors from the market; hence, no single 

method can accurately predict changes in the stock market 

every day. Doubleday, Kevin J., and Esunge, Julius N. 

(2011) determined the relationship between a diverse 

portfolio of stocks and the market. The DJIA and portfolio 

of five stocks wereanalyzed using a Markov Chain. They 

concluded that when treated as a Markov process, the 

entire market was useful in gauging how a diverse portfolio 

of stocks might behave. Vasanthi Set al. (2011) tried to 

predict the stock index trend of various global stock indices 

using Markov Chain Analysis and found that majority of the 

time, the Markov model outperformed the traditional trend 

prediction methods.Badge, Jyoti (2012) used selected 

technical indicators of macro-economic factors of the 

Indian stock market as an input variable. Future prices 

have been found through Hidden Markov Model (HMM). It 

has been observed that HMM with PCA performed well 

and provided a Mean Absolute Percentage Error (MAPE) 

of 1.77%.Choji, Davou Nyapet al.(2013) used the Markov 

chain model to analyze and to make predictions of the two 

top banks in the three states. They found that regardless of 

a bank‘s current share price, in the long run, its share price 

will depreciate with a probability of 0.4229, remain 

unchanged with a probability of 0.2072, and appreciate 

with a probability of 0.3699. Otieno, Simeyo et al. (2015) 

used secondary quantitative data on the daily closing 

share prices of Safaricom from the NSE website. It has 

been observed that irrespective of the current state of 

share price, the model predicted that the Safaricom share 

prices would depreciate, maintain value, or appreciate with 

a probability of 0.3, 0.1, and 0.5, respectively. Bairagi, 

Aparna and Kakaty, Sarat C. (2016) used the Markov 

Chain model to analyze and predict the stock behavior 

considering three different states, 'up', 'down', and 'remain 

same'. The study revealed that regardless of the bank‘s 

current share price, steady-state probabilities of share 'up', 

'down' and 'remain same' for SBI were 46.99%, 49.81%, 

and 3.19%, respectively. If the closing value of SBI share 

was on the state 'up' on day one, then it can be expected 

to return to the state ‗up‘ for the first time on the third 

day.Singh, Waikhom Rojen et al. (2017) presented a paper 

with objectives to predict the prompt future change in 

opening stock price and to find a steady-state transition 

probability matrix. The opening stock price of National 

Stock Exchange NIFTY 50 of India has been studied and 

the opening price of Stock was examined as following 

Markov chain. Bhusal, Madhav Kumar (2017) attempted to 

apply a Markov Chain model to forecast the behaviors of 

the Nepal Stock Exchange (NEPSE) index.  The study 

explored that regardless of the present status of the 

NEPSE index, in the long run, the index will increase with 

a probability of 0.3855, remains in the same state with 

probability 0.1707, and decrease with a probability of 

0.4436.  

 The study is an attempt to analyze the trend and 

prediction of the National Stock Exchange (NSE) Index, 

India, using the Markov Chain Model in line with the 

above-mentioned work of the authors.   

 
Objectives of the Study 

1. To study the long-run behavior of the NSE Index  
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2. To find out the expected number of visits to a 

particular state and  

3. To find out the expected first reaching time of various 

states.  

 Markov Chains and their respective diagrams can be 

used for predicting the likelihood of future market 

conditions. These conditions, also known as trends, are: 

 Increase (Bull Markets): periods where prices 

generally are rising due to the investors having optimistic 

hopes of the future, i.e., the closing value is greater than 

the closing value of the previous day. 

 Unchanged (Stagnant Markets): periods, where the 

market is characterized by neither a decline nor rise in 

general price,i.e., closing value, is equal to the closing 

value of the previous day. 

 Decrease (Bear Markets) periods where prices 

generally are declining due to the investors having 

pessimistic views of the future, i.e., Closing value is less 

than the closing value of the previous day. 

 
Data and Methodology  

For the study, secondary quantitative data on the daily 

closing prices of the NSE Index was obtained over a 

period from 3rd February 2020 to 29th January, forming 247 

days of trading data from the official website of the 

NSEwww.nseindia.com. Here, the number of observations 

for Index value Increase, Unchanged, and Decrease has 

been found as 105, 81, and 61, respectively. Since the last 

trading day is recorded as a decrease and there is no 

information regarding the next day‘s transition, the total 

number of decreases should be recorded as (61-1) = 60.  

 
The basic theory of the Markov chain model 

In 1907, A. A. Markov began the study of an important new 

type of chance process. In this process, the outcome of a 

given experiment can affect the outcome of the next 

experiment. This type of process is called a Markov chain. 

 Markov process is a special type of stochastic 

process for which the future occurrence of any event 

depends only on the present state. The set of values that 

the Markov process takes is known as its state-space. 

Depending on the values of state-space, the process may 

be discrete or continuous. The process with discrete state 

space is known as the Markov chain. Markov chain is one 

of the mostwell-developed theories of a stochastic 

processwith wider applications.  

 
Definition of Markov chain  

The sequence {Xn, n ≥ 0} is said to be a Markov chain if for 

all state values i0, i1, i2, ……, in ϵ I, then  

P{Xn+1 = j/ X0 = i0, X1 = i1, ……………..., Xn = i} = 

P{Xn+1 = j/ Xn = i} 

 Where, i0, i1, i2, ……, in are the states in the state 

space I.  

 This kind of probability is called Markov chain 

probability. This implies that regardless of its history before 

time n, the probability that it will make a transition to 

another state j depends only on state i.  

 
Transition probability and transition probability matrix  

The transition probability, as defined by the Markov chain, 

is called transition, or jump probability from state i to state 

j. Then,  

 P {Xn+1 = j/ Xn = i} = pij 

 This is also termed as one-step transition probability. 

If the transition probabilities defined above are 

independent of time (n), then such an assumption is called 

a homogenous or stationary Markov chain. Thus,  

 P {Xn+1 = j/ Xn = i} = P{X1 = j/ X0 = i} = pij 

 The transition probabilities pij‘scan be written or 

arranged in a matrix form as,  

 P = [pij], i, j ϵ I 

 Here, the matrix P is called the transition probability 

matrix (TPM) or stochastic matrix. The matrix P insists on 

non-negative elements with row sum unity. Hence 

 0 ≤ pij ≤ 1 and  𝑃𝑛
𝑗 =1 ij=1 , √ i ϵ I 

 The k-step transition probability from state i to state j 

in k stepsis, 

 Pij(k) = P {Xn+k = j / Xn = i}, √ k > 0, n≥ 0, I,jϵI 

 The Transition matrix P has the following property. 

 P (n)  = Pn-1 * P = Pn 

 
State Probability Matrix 

The average transition process of the Markov chain 

depends on the system‘s initial state and the transition 

probability matrix. The initial state is a line matrix called 

initial probability vector defined as; 
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P ( X0 = i) = P (0) = [ p0 (0) p1 (0) ……… pn (0)], 0 ≤ pi 

(0) ≤ 1 and  𝑃𝑖(0)𝑛
𝑖=0  =1  for all states.  

 Similarly, the probability vector at time n may be 

defined as  

P ( Xn = i) = P (n) = [ p0 (n) p1 (n) ……… pn (n)], 0 ≤ pi 

(n) ≤ 1 and  𝑃𝑖(𝑛)𝑛
𝑖=0  =1  for all state. 

 By knowing the initial state of the system and 

transition matrix after the nth step, 

 P (k+1) = P (k) * P 

 Which gives;  

 P(1) = P (0) * P 

 P(2) = P (1) * P = P (0) * P2 

P(k) = P (k-1) * P = P (k-2) * P2 = …………. = P(0) * 

Pk 

Hence, 

 P(k+1) = P (0) * Pk+1 , for k ≥ 0 

 This indicates that the transition probability matrix 

after the (k+1) step is the product of the initial probability 

vector and (k+1)th power of the one-step transition 

probability matrix. 

 
Irreducible Markov Chain 

If it is not possible to partition the state space into two or 

more disjoint closed sets, a Markov chain is said to be 

irreducible. Which means it consists of only of a single 

class. 

 
Absolute Probability 

The state probability distribution {Pj (n), j ϵ  I} shows the 

probability of finding the particle at state j at the nth trial. If 

Pi (0) be the probability of finding such particle at state I at 

initial trial then, 

 P (Xn = j) = Pj (n) =  𝑃𝑖  (Xn = j, X0 = i) = 

  𝑃𝑖  𝑋𝑛 =  𝑗 𝑋0 =  𝑖    P (X0 = i) 

 =  𝑃𝑖 i (0) . Pij (n) , n >0 

Here, {Pj (n), j ϵ I} is the initial probability distribution.  

 
Stationary Distribution of a Markov Chain  

This property of the Markov Chain states that regardless of 

the initial state of the system, how does the stochastic 

process evolve, when the number of transition steps is 

sufficiently large, then the transition probability from state i 

to state j becomes settle down to some constant value. 

Thus,  

 lim𝑛  →∞ 𝑝𝑖𝑗  𝑛 = 𝜋 𝑗  

 Such quantities are referred to as steady-state 

probabilities.  

 If the limits 𝜋j =lim𝑛  →∞ 𝑝𝑗  𝑛  =lim𝑛  →∞ 𝑝𝑖𝑗  𝑛  

exists and does not depend on the initial state, then  

Pj (n) =  𝑃𝑘 k (n-1) Pkj becomes𝜋j  = 𝜋𝑘 k Pkj , as n 

→∞for  j = 0,1,2,………. 

 

 This is equivalent to 𝜋 = 𝜋 * P 

 The probability distribution {𝜋j , i ϵ I} is called 

stationary or invariant for the given chain if  

 𝜋i =  𝜋𝑖 𝑃𝑖𝑗 𝑖ϵ I such that 𝜋i  ≥ 0 and  𝜋 𝑖 I =1 

 This property of the Markov Chain helps to determine 

the long-run behavior of the chain.  

 
Expected number of Visits 

The expected number of visits made by the chain to state j 

starting from state i is given by 

 𝜇ij (n) = E (Nij (n)) 

Where Nij (n) denotes the number of visits to state j starting 

from state i in n-steps. 

Were, 

 Nij (n) =  𝑌𝑖𝑗  𝑘 𝑛
𝑘=1  with Yij (0) = 𝜕ij , the Kronecker 

delta. 

 And Yij (k) =   
1, 𝑖𝑓 𝑋𝑘 =  𝑗/𝑋0 = i

0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 Then, 𝜇ij (n)  = E   𝑌𝑖𝑗(𝑘)𝑛
𝑘=1   

 =  𝐸(𝑌𝑖𝑗(𝑘))𝑛
𝑘=1  

 =  𝑃[𝑌𝑖𝑗(𝑘) = 1]𝑛
𝑘=1  

 ∴  𝜇ij (n)  =   𝑃𝑖𝑗(𝑘)𝑛
𝑘=1  

 Also, the expected number of visits to state j from 

state i after long-run is;

 𝜇ij (n)  =  lim
𝑛  →∞

𝐸 (𝑁𝑖𝑗 (𝑛)) 

 
Expected Return Time  

For a finite irreducible Markov chain, the expected return 

time to state j, j ϵ I can be obtained by taking the reciprocal 

of limiting probability pij(n).  

 
Determination of Initial State Vector 

The closing price shows three different states Increase, 

Unchanged, and Decrease, as each closing price index is 

taken as a discrete-time unit. The Initial state vector gives 

the probabilities of the three different states.  
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 The state vector is denoted by 𝜋(0) = (𝜋1, 𝜋2 , 𝜋3 ) 

then 𝜋1 , 𝜋2 and 𝜋3 gives the probability of the NSE index 

increase, unchanged and decrease as  

 𝜋1 = 105/246 = 0.4268   

 𝜋2 = 81/246   = 0.3293 

 𝜋3 = 60/246 = 0.2439 

 So, the initial state vector for the NSE index is -  

 𝜋(0) =  0.4268 0.3293 0.2439  

 
Determination of Three state transition probability 

metrics  

The states are the chances that the NSE index increases, 

that is unchanged, and that it decreases. That transitions 

from one state to another observed from the data panel 

and were compiled in Table 1 as follows: 

 
Table 1: The Transition Matrix of NSE Index 

 Increase Unchanged Decrease 

Increase 50 38 105 

Unchanged 25 29 81 

Decrease 29 14 51 

 
 The transition probability matrix of the NSE index 

using the above information can be constructed as;  

 P (1)NSE  =       
0.4762 0.3619 0.1619
0.3086 0.3580 0.3333
0.3922 0.2745 0.3333

  

 The transition digraph for the explicit presentation of 

transition probability of the NSE index is shown below - 

 
Figure 1 Transition Probability Digraph of the NSE 

Index 

 
 

 

Calculating state probability for forecasting the next 

day NSE index price  

By applying initial state vector and transition probability 

metrics, it is possible to find out the state probability of 

various closing days in the future. The state probability of 

closing price of the NSE index for the 248th day will be - 

𝜋(1) = 𝜋(0) * PNSE =  0.4268 0.3293 0.2439   * 

  
0.4762 0.3619 0.1619
0.3086 0.3580 0.3333
0.3922 0.2745 0.3333

  

 248th Day = 𝜋(1) =  0.4228 0.3293 0.2480  

 This indicates that on the 248th day the state 

Increases have maximum probability, and it can be 

predicted that the NSE index will increase on this day with 

a probability of 0.4228.  Similarly, the state probabilities of 

closing index price for 249th day will be 

 𝜋(2) = 𝜋(1) * PNSE =  0.4228 0.3293 0.2480   * 

  
0.4762 0.3619 0.1619
0.3086 0.3580 0.3333
0.3922 0.2745 0.3333

  

 249th Day = 𝜋(2) =  0.4228 0.3287 0.2485  

 Thus, it can be said that there is a possibility of the 

NSE index price increases with a probability of 0.4228, 

unchanged with a probability of 0.3287, and decreases 

with a probability of 0.2485. These predictions are the 

same as the actual data.  

 
The n-step Transition Metrics  

The prediction of the long-run behavior of the NSE index is 

very meaningful and important for investors. The long-run 

behavior of the NSE index can be determined by using the 

n-step transition probability matrix. The n-step metrics 

P(n)NSE shows the behavior of stock index n-step later. If the 

number of steps increases then the P(n)NSE converges to 

limiting transition metrics P(∞)NSE, where each row of the 

matrix is identical, and it is said that the chain has attained 

a steady-state or state of equilibrium. The steady-state 

metrics provide the probability of the NSE index increase, 

unchanged, and decrease in the future. In other words, the 

nth power transition probability metrics will provide the 

probability that the NSE index price will be in a particular 

state in n days, given that it is currently in some specified 

state. To examine the long-term behavior of the NSE 

index, the higher-order transition probability metrics are 

calculated with the help of Microsoft Excel. 
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 P (1)NSE  = 
0.4762 0.3619 0.1619
0.3086 0.3580 0.3333
0.3922 0.2745 0.3333

  

 P (2) NSE=       
0.4167 0.3397 0.2436
0.4186 0.3177 0.2638
0.4391 0.3246 0.2363

  

 P (3) NSE=       
0.4210 0.3293 0.2497
0.4249 0.3268 0.2484
0.4235 0.3303 0.2462

  

 P (4) NSE=       
0.4228 0.3285 0.2487
0.4232 0.3287 0.2481
0.4226 0.3290 0.2484

  

 P (5) NSE=       
0.4229 0.3287 0.2484
0.4229 0.3287 0.2482
0.4228 0.3287 0.2485

  

P (6) NSE=   
0.4229 0.3287 0.2484
0.4229 0.3287 0.2484
0.4229 0.3287 0.2484

  = P (7)NSE= 

P (8)NSE   = P (9)NSE   = P (10)NSE   = ……... 

 The higher-order transition probability matrix of the 

NSE index computed above shows that after the 5th trading 

day since 247 trading days, the transition probability 

metrics tend to the steady-state or the state of equilibrium. 

After then the transition probability matrix remains 

unchanged for the onward consecutive trading days. 

These steady-state transition probability metrics of the 

NSE index reveals the following information.  

 The probability that the NSE index increases shortly 

irrespective of its initial state increase, unchanged or 

decrease is 0.4229. There is a 0.2484 chance that the 

NSE index will decrease shortly irrespective of its initial 

state increase, unchanged or decrease. The chance of the 

NSE index unchanged in the same state shortly 

irrespective of its initial state increase, unchanged or 

decrease is 0.3287.  

 If the NSE index starts in a given state with initial 

state vector 𝜋(0) =  0.4268 0.3293 0.2439 , then 

the probability of the NSE index will increase, unchanged, 

or decrease at a particular trading day in steady-state 

condition can be determined by multiplying the initial state 

vector by the higher-order transition probability metrics 

obtained at the state of equilibrium. Then,  

 𝜋 0  * P (6)NSE=   0.4268 0.3293 0.2439  * 

  
0.4229 0.3287 0.2484
0.4229 0.3287 0.2484
0.4229 0.3287 0.2484

  

 =      0.4229 0.3287 0.2484  

 This result indicates the long-run probability of the 

NSE index being in increasing, unchanged, or decreasing 

states. The probability that the NSE index increases at the 

state of equilibrium are 0.4229, unchanged is 0.3287, and 

the probability that the NSE index decreases are 0.2484.  

 
Expected number of visits  

Here an attempt has been made to find out the expected 

number of visits, the NSE index makes to a particular state 

from another state in different steps.  

 For the NSE index, the number of visits the chain 

makes in five trading days is given by the following 

metrics.  

 μij (5) = 
2.1596 1.6880 1.1523
1.9982 1.6599 1.3419
2.1914 1.5458 1.2628

  

 From the matrix obtained above, it may be revealed 

that if the NSE index starts from the increasing state, the 

expected number of visits the chain for the NSE index 

makes to the increasing state out of five trading days is 

2.1596, to the state unchanged is 1.6880 and to the state, 

the decrease is 1.1523.  

 Likewise, if the NSE index starts from an unchanged 

state, the expected number of visits the chain makes to the 

state increase is 1.9982, to the state unchanged is 1.6599 

and to the state, a decrease is 1.3419.  

 Similarly, if the NSE index starts from decreasing 

state, the expected number of visits the chain makes to the 

state increase is 2.1914, to the state unchanged is 1.5458 

and to the state, a decrease is 1.2628.  

 
Expected return time 

It will be meaningful to understand the expected duration 

the NSE index will stay in the increase, decrease, or 

unchanged state. The steady-state transition probability is 

used to determine the expected return time to a state 

starting from the same state. For a finite irreducible 

MarkovChain, the expected return time to the same state 

is a reciprocal of the steady-state probabilities. Here for the 

NSE index the expected return time to the increasing state, 

starting from the same increasing state is 1/0.4229 = 

2.3646. This result shows that the chain for the NSE index 

should visit the increasing state on an average in two days. 

Similarly, the expected return time to remain unchanged, 

starting from the unchanged state is 1/0.3287 = 3.0423. 
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This means the chain for the NSE index should visit the 

state unchanged on an average of three days. The 

expected return time to the decreasing state, starting from 

the decreasing state is 1/0.2484 = 4.0258. This result 

helps to conclude that the chain should visit the decreasing 

state on an average of four days.  

 
Conclusion 

To predict the stock market behavior, the Markov Chain 

model assumes that the performance of the stock market 

is completely affected by stochastic factors. The 

movement of a stock index to various states in a particular 

trading day is independent of the index of initial trading 

days but depends only on the index of the most recent 

day. The prediction of the behavior of the stock market is 

very complexbecause the operational status of the stock 

market is subject to the influence of various factors from 

the market; therefore, there is no single method available 

that can accurately predict changes in the stock market 

every day. Hence, investors can combine the results of 

forecasts from using the Markov chain to predict with other 

factors and achieve relatively good results.  

 In this paper, the Markov Chain Model is applied to 

predict the behavior of the NSE Index. The predicted 

results are stated in terms of the probability of a certain 

state of the NSE Index in the future. The model does not 

provide the prediction results in an absolute state.The 

initial state vector and the transition probability matrices 

are used to estimate the probability of the NSE Index being 

in different states in the future days. The steady-state 

probabilities are obtained from the n-step transition 

probability matrices. The result of the steady-state 

probability matrix shows that the chance of the NSE Index 

will increase in the future is 0.4229, will be unchanged 

soon is 0.3287, and will decrease soon is 0.2484. The 

expected number of visits to a particular state from other 

states is also computed. The result shows that out of five 

trading days, the expected number of visits the chain for 

the NSE Index made to the increasing state starting from 

the increasing state is 2.1596. The expected number of 

visits to the decreasing state starting from the decreasing 

state is out of five trading days for the chain is 1.1523.The 

result of the expected return time shows that the chain for 

the NSE index should visit the increasing state on an 

average in two days and the expected return time to the 

decreasing state, starting from the decreasing state is four 

days.  
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