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Abstract

We investigate the spectral properties of rheotrix operators, non-symmetric
flow matrices that characterize directed transitions in stochastic systems,
with a focus on the role of complex eigen values in metastable state detection.
Most spectral clustering methods use reversible or symmetric transition
matrices, so that their eigen values are real. As a result, they cannot be
used easily to many non-reversible systems with cyclical or oscillatory
nature. To overcome this problem, we extend spectral clustering to work
with rheotrix matrices which have complex eigen values. By splitting the
complex eigenvectors into their real and imaginary parts, we can group
cluster system states into meaningful metastable flow groups. With a
standard cyclic rheotrix example, we are able to show that the complex
spectral structure captures directional flow patterns, and that our method
successfully finds coherent groups in directed stochastic dynamics. This
work provides the foundation for analyzing both steady-state and transient
behaviours in non-equilibrium systems by making use of spectral methods
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designed specifically for flow-based operators.
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Introduction

Spectral methods are now key tools to study
complex stochastic systems, particularly in detecting
metastable states and clustering behaviour based on
transition dynamics. Most of our traditional methods
are designed for reversible Markov chains whose
transition matrices are symmetric or that can be
symmetrized, which provides real eigen values. This
makes the spectral interpretation easier and supports
clustering methods such as Perron Cluster Analysis.
But, in many real-world systems such as biochemical
pathways, ecological interactions, and directed
transport processes, non-reversible behaviour which
is governed by asymmetric flow operators will
always occur. Usually, in such systems transition
matrices, or rheotrixes have complex eigen values
and eigenvectors, reflecting the inherent cyclic or

oscillatory dynamics. Since they rely on real-valued
eigen values and eigen vectors, traditional spectral
clustering methods cannot effectively work with
this. Here, we present a spectral clustering method
designed for rheotrix operators that have complex
eigen values and eigen vectors. By splitting the
complex eigenvectors into their real and imaginary
parts, our work forms a special feature that retains
the required characteristics of the flow of the
system. Due to this, system states can be clustered
into metastable flow groups that represent the true
non-equilibrium dynamics. Using an exact cyclic
rheortix system, we show how its spectral features
highlight coherent flow structures and how our
method gives meaningful groupings in the directed
stochastic processes. Our work provides a base for
further research in the fields of non-equilibrium
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statistical mechanics, network flow dynamics, and
other areas where non-reversibility and complex
eigen-structures are very important.

Literature Review

The techniques of Spectral clustering have been
studied in reversible Markov processes, where
transition matrices are symmetric or symmetrizable
and possess real eigen values. Research by Schiitte
and Noé [1] introduced Perron Cluster Analysis
(PCCA), using dominant eigenvectors to identify
metastable states. Deuflhard et al. [2] further
developed these methods to analyze molecular
dynamics by spectral decomposition, relying on
detailed balance and real spectral structures for
interpretability. Many systems which are natural
and engineered violate detailed balance, exhibiting
directional or cyclic flows that lead to non-symmetric
transition matrices with complex spectra. Such
systems appear in biochemical reaction networks
with feedback loops [3], ecological stability analysis
[4], and non-equilibrium thermodynamics [5].
Traditional spectral clustering methods find difficult
to capture metastability in these cases due to their
dependence on real eigen values. Though the term
rheotrix is not yet standard, related concepts of
flow operators for directed transitions have been
studied via non-symmetric graph Laplacians [6] and
directed network flows [7]. These works highlight
the importance of spectral analysis of non-normal
operators for understanding cycles and oscillatory
dynamics in directed systems. Recent research has
advanced clustering methods to handle complex
eigen values arising from directed dynamics. Fujii
and Uchiyama [8] introduced techniques for Markov
chains with oscillatory modes, using complex
spectra. Zhang et al. [9] demonstrated decomposing
complex eigenvectors into real and imaginary parts
for clustering in directed graphs, pointing out the
importance of preserving the imaginary component
to capture cyclic behaviour.

Contributions and Gap Addressed

Although progress has been made, there remains a
lack of a dedicated framework for spectral clustering
specifically tailored to rheotrix operators with
complex eigen values. This work addresses that gap

by formalizing the spectral decomposition of rheotrix
operators, using the real and imaginary parts of
eigenvectors for feature embedding, and validating
the method on cyclic flow systems. In doing so, it
advances the analysis of metastable states in non-
reversible stochastic dynamics.

Mathematical Preliminaries

Rheotrix Definition:

Let S = {1,2,...,n} denote the finite state space of a
stochastic system. A rheotrix RE R** is a flow matrix
representing directed transitions between states,
where the entry Rij quantifies the flow or transition
probability from state i to state j. Unlike symmetric
or reversible transition matrices, R may be non-
symmetric, reflecting non-reversible dynamics.

A rheotrix is a square matrix that represents the
flow of a quantity (such as current, fluid, or data)
between nodes in a network or system. Formally, a
rheotrix R=[r,] of order n is an nxn matrix where
r, is the amount of flow from node i to node j. r,
> 0 for non-negative flows (though negative entries
can indicate reverse flow in extended models). r, = 0
unless self-flow is explicitly modelled.

Spectral Decomposition of Rheotrix

The spectral properties of R play a fundamental role
in understanding system dynamics. The eigen values
A}, =1, 2, ...,n of R satisfy the characteristic
equation det(R—AI)=0, where I is the identity matrix.
The corresponding eigenvectors {v}, i=l, 2, ...,n
satisfy Rv=A.v..

For non-symmetric R, eigen values A, may be
complex, occurring in conjugate pairs if R is real.
Complex eigen values indicate cyclic or oscillatory
dynamics in the system.

Complex Eigenvector Decomposition
Given a complex eigenvector veC", it can be
decomposed into real and imaginary parts

v = vRepjyIm - yRe yIim eR" This decomposition
allows representation of complex spectral
information in a real-valued space suitable for
clustering and further analysis.
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Metastable States and Spectral Clustering
Metastable states correspond to groups of states
between which transitions occur rarely relative to
transitions within groups. These structures manifest
as eigen values A, close to 1 (in magnitude) and their
associated eigenvectors v,.

Spectral  clustering subset of
eigenvectors corresponding to dominant eigen
values to embed the states into a feature space,
where clustering algorithms (e.g., k-means) identify
metastable groups.

utilizes a

Methods
We propose a spectral clustering algorithm tailored to
rheotrix operators exhibiting complex eigen values,
enabling identification of metastable flow clusters in
non-reversible systems. The method consists of the
following key steps:

Construction of the Rheotrix R

Spectral Decomposition of R

Feature Extraction from Complex Eigenvectors

Clustering of States in the Spectral Feature Space
Step 1: Construction of the Rheotrix

Given a directed stochastic system with state
space S, we represent transition flows by a non-
symmetric matrix RER™™ where each entry R, >0
quantifies the transition probability or flow intensity
from state iii to state j. R is typically row-stochastic
(rows sum to 1), but this assumption can be relaxed
depending on the application.
Step 2: Spectral Decomposition

We compute the eigen values {A} and
corresponding eigenvectors {v} of R. Because R
is generally non-symmetric, eigen values may be
complex, reflecting non-reversible cyclic behavior in
the system.
Step 3: Feature
Eigenvectors

To embed states into a real-valued feature
space suitable for clustering, we handle complex
eigenvectors as follows:

Identify eigenvalues A, with magnitude close to 1,
as these correspond to metastable dynamics.

For each associated eigenvector v.€C", separate
into real and imaginary parts:

v=v ey

Extraction from Complex

Construct feature vectors for each state by
stacking these components. For example, if m
eigenvectors are chosen, the feature vector for state j
is fj=(vj, 1Re vy, 1™, . .,Vj,mRe,Vj’mlm)TE R,

This embedding captures oscillatory and
directional information from the rheotrix spectral
structure.

Step 4: Clustering in the Spectral Feature Space

Using the feature vectors {t}}, j=1,2,...n, we
apply a clustering algorithm such as k-means to
partition the states into k clusters:

Tradnt

w L Epeclifi —mll,”

|"’-‘.' i

where p_i is the mean of cluster Ci.

The resulting clusters correspond to metastable
flow groups within the system, reflecting coherent
structures in the non-reversible dynamics captured
by the rheotrix.

Algorithm Summary

Input: Rheotrix R, desired number of clusters k.

1. Compute eigenvalues A, and eigenvectors v, of R.

2. Select eigenvectors with [A]=1.

3. Form real- valued feature vectors fj from real
and imaginary parts of v..

4. Cluster states {fj} using k- means into k clusters.
Output: Cluster labels indicating metastable flow

states.

Algorithmic and Practical
Considerations

Spectral Decomposition Complexity

The primary computational cost in the proposed
spectral clustering method lies in the eigen
decomposition of the rheotrix RER ~ Standard
algorithms for full eigen decomposition, such as the
QR algorithm, have a worst-case complexity of O(n?)

which can be prohibitive for large-scale systems.

Complexity

Feature Construction and Clustering

After spectral decomposition, the construction of
feature vectors involves separating the real and
imaginary parts of the selected eigenvectors. This
operation scales linearly with n and m: O(nxm). The
subsequent clustering step, typically k-means, has a
complexity of O(nxkxtxd)
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where k is the number of clusters, t is the
number of iterations until convergence, d=2m is the
dimensionality of the feature space (real + imaginary
parts). Given that m and k are usually small relative to
n, clustering is often computationally less expensive
compared to eigen decomposition.

Practical Considerations

Sparsity: Many rheotrix matrices derived from
real systems are sparse, enabling efficient eigen
computations and reducing memory footprint.

Choice of m: Selecting an appropriate number
of eigenvectors is critical. Too few may miss
relevant metastable structures; too many increase
computation and noise sensitivity.

Normalization: Preprocessing rheotrix matrices
(e.g., row normalization or symmetrization variants)
may improve numerical stability.

Complex Eigen values: Handling complex
eigenvectors doubles the feature dimensionality but
is essential for capturing cyclic dynamics.

While the cubic complexity of full eigen
decomposition limits  scalability, leveraging
sparse methods and focusing on dominant spectral
components makes the approach feasible for
moderate to large systems. The clustering step is
relatively efficient and can be parallelized. Overall,
the method balances expressive power for non-
reversible dynamics with practical computational
demands.

Numerical Experiments

Experiment Setup

To demonstrate the efficacy of the proposed spectral
clustering method on rheotrix matrices with complex
eigen values, we consider a prototypical cyclic
flow system with n=3 states. The rheotrix matrix is
defined as: R = [010001100]. This matrix encodes
a deterministic cyclic transition 1—-2—3—1 and is
a simple non-symmetric operator with eigen values
given by the cube roots of unity, including complex
conjugate pairs.

Eigen value and Eigenvector Analysis

The eigen values of R are A =1, A =e? A =",
where A, and A, are complex conjugates on the unit
circle, indicating oscillatory flow. Corresponding

eigenvectors for the complex eigen values are also
complex and carry directional and cyclic information.

Feature Construction and Clustering
Using the eigenvector corresponding to A, we
separate its real and imaginary parts to form a two-
dimensional feature vector for each state.

Applying k-means clustering with k=3 on these
features results in partitioning states based on
spectral flow patterns.

Results and Visualization

The clustering algorithm effectively groups each
state into a distinct cluster, capturing the system’s
underlying cyclic structure. A scatter plot of the states
in the spectral feature space constructed from the real
and imaginary components of the eigenvector shows
clear separation between states, demonstrating the
method’s capability to identify metastable flow
clusters even in fully cyclic systems.

Extension to Larger Systems

Initial experiments on larger synthetic rheotrix
matrices, incorporating noise and more intricate flow
structures, show that the method reliably identifies
metastable flow clusters. The complex eigenvalues
and their associated eigenvectors capture critical
information that conventional spectral clustering on
symmetric matrices fails to reveal.

Summary

These experiments validate the effectiveness of
the spectral clustering method based on rheotrix
operators with complex eigenvalues in uncovering
coherent flow patterns and metastable states within
directed stochastic systems, underscoring its promise
for wide-ranging applications in non-equilibrium
dynamics.

Conclusion

In this work, we presented a spectral clustering
framework particularly designed for non-reversible
stochastic systems represented by rheotrix operators
with complex eigen values. Our method decomposed
complex eigenvectors into their real and imaginary
components that maps states into a real-valued
feature space that preserves the system’s directional
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and oscillatory flow information. With this method,
we can uncover metastable flow clusters that
conventional methods failed to detect. Through
numerical experiments on cyclic rheotrix systems,
we have demonstrated that our method successfully
captures coherent cyclic structures and metastability
in directed dynamics. Our algorithm focuses on the
dominant spectral components, giving a balanced
efficiency with so much of power in non-equilibrium
systems. This work bridges an important gap in
spectral analysis of non-reversible processes, and
provide a versatile tool for a wide range of problems
in statistical mechanics, network science, and beyond.
Future work will focus on extending this framework
to time-dependent rheotrix operators, improving
robustness to noise, and exploring applications in
large-scale complex systems.
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