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Abstract
	 We investigate the spectral properties of rheotrix operators, non-symmetric 

flow matrices that characterize directed transitions in stochastic systems, 
with a focus on the role of complex eigen values in metastable state detection. 
Most spectral clustering methods use reversible or symmetric transition 
matrices, so that their eigen values are real. As a result, they cannot be 
used easily to many non-reversible systems with cyclical or oscillatory 
nature. To overcome this problem, we extend spectral clustering to work 
with rheotrix matrices which have complex eigen values. By splitting the 
complex eigenvectors into their real and imaginary parts, we can group 
cluster system states into meaningful metastable flow groups. With a 
standard cyclic rheotrix example, we are able to show that the complex 
spectral structure captures directional flow patterns, and that our method 
successfully finds coherent groups in directed stochastic dynamics. This 
work provides the foundation for analyzing both steady-state and transient 
behaviours in non-equilibrium systems by making use of spectral methods 
designed specifically for flow-based operators.
Keywords: complex eigen values, metastable state, rheotrix, spectral 
decomposition, spectral clustering

Introduction
Spectral methods are now key tools to study 
complex stochastic systems, particularly in detecting 
metastable states and clustering behaviour based on 
transition dynamics. Most of our traditional methods 
are designed for reversible Markov chains whose 
transition matrices are symmetric or that can be 
symmetrized, which provides real eigen values. This 
makes the spectral interpretation easier and supports 
clustering methods such as Perron Cluster Analysis.  
But, in many real-world systems such as biochemical 
pathways, ecological interactions, and directed 
transport processes, non-reversible behaviour which 
is governed by asymmetric flow operators will 
always occur. Usually, in such systems transition 
matrices, or rheotrixes  have  complex eigen values 
and eigenvectors, reflecting the inherent cyclic or  

 

oscillatory dynamics. Since they rely on real-valued 
eigen values and eigen vectors, traditional spectral 
clustering methods cannot effectively work with 
this. Here, we present a spectral clustering method 
designed for rheotrix operators that have complex 
eigen values and eigen vectors. By splitting the 
complex eigenvectors into their real and imaginary 
parts, our work forms a special feature that retains 
the required characteristics of the flow of the 
system. Due to this, system states can be clustered 
into metastable flow groups that represent the true 
non-equilibrium dynamics. Using an exact cyclic 
rheortix system, we show how its spectral features 
highlight coherent flow structures and how our 
method gives meaningful groupings in the directed 
stochastic processes. Our work provides a base for 
further research in the fields of  non-equilibrium 
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statistical mechanics, network flow dynamics, and 
other areas where non-reversibility and complex  
eigen-structures are very important.

Literature Review
The techniques of Spectral clustering have been 
studied in reversible Markov processes, where 
transition matrices are symmetric or symmetrizable 
and possess real eigen values. Research by Schütte 
and Noé [1] introduced Perron Cluster Analysis 
(PCCA), using dominant eigenvectors to identify 
metastable states. Deuflhard et al. [2] further 
developed these methods to analyze molecular 
dynamics by spectral decomposition, relying on 
detailed balance and real spectral structures for 
interpretability. Many systems which are natural 
and engineered violate detailed balance, exhibiting 
directional or cyclic flows that lead to non-symmetric 
transition matrices with complex spectra. Such 
systems appear in biochemical reaction networks 
with feedback loops [3], ecological stability analysis 
[4], and non-equilibrium thermodynamics [5]. 
Traditional spectral clustering methods find difficult 
to capture metastability in these cases due to their 
dependence on real eigen values. Though the term 
rheotrix is not yet standard, related concepts of 
flow operators for directed transitions have been 
studied via non-symmetric graph Laplacians [6] and 
directed network flows [7]. These works highlight 
the importance of spectral analysis of non-normal 
operators for understanding cycles and oscillatory 
dynamics in directed systems. Recent research has 
advanced clustering methods to handle complex 
eigen values arising from directed dynamics. Fujii 
and Uchiyama [8] introduced techniques for Markov 
chains with oscillatory modes, using complex 
spectra. Zhang et al. [9] demonstrated decomposing 
complex eigenvectors into real and imaginary parts 
for clustering in directed graphs, pointing out the 
importance of preserving the imaginary component 
to capture cyclic behaviour.

Contributions and Gap Addressed
Although progress has been made, there remains a 
lack of a dedicated framework for spectral clustering 
specifically tailored to rheotrix operators with 
complex eigen values. This work addresses that gap 

by formalizing the spectral decomposition of rheotrix 
operators, using the real and imaginary parts of 
eigenvectors for feature embedding, and validating 
the method on cyclic flow systems. In doing so, it 
advances the analysis of metastable states in non-
reversible stochastic dynamics.

Mathematical Preliminaries
Rheotrix Definition:
Let S = {1,2,…,n} denote the finite state space of a 
stochastic system. A rheotrix R∈ Rn×n  is a flow matrix 
representing directed transitions between states, 
where the entry Rij quantifies the flow or transition 
probability from state i to state j. Unlike symmetric 
or reversible transition matrices, R may be non-
symmetric, reflecting non-reversible dynamics.
	 A rheotrix is a square matrix that represents the 
flow of a quantity (such as current, fluid, or data) 
between nodes in a network or system. Formally, a 
rheotrix R=[rij] of order n is an n×n  matrix where  
rij is the amount of flow from node i to node j. rij 

≥ 0 for non-negative flows (though negative entries 
can indicate reverse flow in extended models). rii = 0 
unless self-flow is explicitly modelled.

Spectral Decomposition of  Rheotrix
The spectral properties of  R play a fundamental role 
in understanding system dynamics. The eigen values 
{λi}, i=1, 2, …,n  of R satisfy the characteristic 
equation det(R−λI)=0, where I is the identity matrix. 
The corresponding eigenvectors {vi}, i=1, 2, …,n 
satisfy Rvi=λivi. 
	 For non-symmetric R, eigen values λi may be 
complex, occurring in conjugate pairs if R is real. 
Complex eigen values indicate cyclic or oscillatory 
dynamics in the system.
	
Complex Eigenvector Decomposition
Given a complex eigenvector v∈Cn, it can be 
decomposed into real and imaginary parts 
	 v = vRe+ivIm,  vRe,vIm ∈Rn.  This decomposition 
allows representation of complex spectral 
information in a real-valued space suitable for 
clustering and further analysis.
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Metastable States and Spectral Clustering
Metastable states correspond to groups of states 
between which transitions occur rarely relative to 
transitions within groups. These structures manifest 
as eigen values λi close to 1 (in magnitude) and their 
associated eigenvectors vi.
	 Spectral clustering utilizes a subset of 
eigenvectors corresponding to dominant eigen 
values to embed the states into a feature space, 
where clustering algorithms (e.g., k-means) identify 
metastable groups.

Methods
We propose a spectral clustering algorithm tailored to 
rheotrix operators exhibiting complex eigen values, 
enabling identification of metastable flow clusters in 
non-reversible systems. The method consists of the 
following key steps:
	 Construction of the Rheotrix R
	 Spectral Decomposition of R
	 Feature Extraction from Complex Eigenvectors
	 Clustering of States in the Spectral Feature Space
Step 1: Construction of the Rheotrix
	 Given a directed stochastic system with state 
space S, we represent transition flows by a non-
symmetric matrix R∈Rn×n, where each entry Rij ≥ 0 
quantifies the transition probability or flow intensity 
from state iii to state j. R is typically row-stochastic 
(rows sum to 1), but this assumption can be relaxed 
depending on the application.
Step 2: Spectral Decomposition
	 We compute the eigen values {λi} and 
corresponding eigenvectors {vi} of R. Because R 
is generally non-symmetric, eigen values may be 
complex, reflecting non-reversible cyclic behavior in 
the system.
Step 3: Feature Extraction from Complex 
Eigenvectors
	 To embed states into a real-valued feature 
space suitable for clustering, we handle complex 
eigenvectors as follows:
	 Identify eigenvalues λi with magnitude close to 1, 
as these correspond to metastable dynamics.
	 For each associated eigenvector vi∈Cn, separate 
into real and imaginary parts:
	 vi=vi

Re+ivi
Im. 

	

	 Construct feature vectors for each state by 
stacking these components. For example, if m 
eigenvectors are chosen, the feature vector for state j 
is fj=(vj,1

Re,vj,1Im,…,vj,m
Re,vj,m

Im)⊤∈ R2m.  
	 This embedding captures oscillatory and 
directional information from the rheotrix spectral 
structure.
Step 4: Clustering in the Spectral Feature Space
	 Using the feature vectors {fj}, j =1, 2, …n, we 
apply a clustering algorithm such as k-means to 
partition the states into k clusters: 

where μ_i is the mean of cluster Ci.
	 The resulting clusters correspond to metastable 
flow groups within the system, reflecting coherent 
structures in the non-reversible dynamics captured 
by the rheotrix.

Algorithm Summary
Input: Rheotrix R, desired number of clusters k.
1. 	 Compute eigenvalues λi and eigenvectors vi of R.
2. 	 Select eigenvectors with ∣λi∣≈1.
3. 	 Form real- valued feature vectors fj from real 
	 and imaginary parts of vi.
4. 	 Cluster states {fj} using k- means into k clusters.
	 Output: Cluster labels indicating metastable flow 
states.

Algorithmic Complexity and Practical 
Considerations
Spectral Decomposition Complexity
The primary computational cost in the proposed 
spectral clustering method lies in the eigen 
decomposition of the rheotrix R∈Rn×n. Standard 
algorithms for full eigen decomposition, such as the 
QR algorithm, have a worst-case complexity of O(n3) 
which can be prohibitive for large-scale systems. 

Feature Construction and Clustering
After spectral decomposition, the construction of 
feature vectors involves separating the real and 
imaginary parts of the selected eigenvectors. This 
operation scales linearly with n and m: O(n×m). The 
subsequent clustering step, typically k-means, has a 
complexity of O(n×k×t×d) 
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	 where k is the number of clusters, t is the 
number of iterations until convergence, d=2m is the 
dimensionality of the feature space (real + imaginary 
parts). Given that m and k are usually small relative to 
n, clustering is often computationally less expensive 
compared to eigen decomposition.

Practical Considerations
Sparsity: Many rheotrix matrices derived from 
real systems are sparse, enabling efficient eigen 
computations and reducing memory footprint.
	 Choice of m: Selecting an appropriate number 
of eigenvectors is critical. Too few may miss 
relevant metastable structures; too many increase 
computation and noise sensitivity.
	 Normalization: Preprocessing rheotrix matrices 
(e.g., row normalization or symmetrization variants) 
may improve numerical stability.
	 Complex Eigen values: Handling complex 
eigenvectors doubles the feature dimensionality but 
is essential for capturing cyclic dynamics.
	 While the cubic complexity of full eigen 
decomposition limits scalability, leveraging 
sparse methods and focusing on dominant spectral 
components makes the approach feasible for 
moderate to large systems. The clustering step is 
relatively efficient and can be parallelized. Overall, 
the method balances expressive power for non-
reversible dynamics with practical computational 
demands.

Numerical Experiments
Experiment Setup
To demonstrate the efficacy of the proposed spectral 
clustering method on rheotrix matrices with complex 
eigen values, we consider a prototypical cyclic 
flow system with n=3 states. The rheotrix matrix is 
defined as: R = [010001100]. This matrix encodes 
a deterministic cyclic transition 1→2→3→1 and is 
a simple non-symmetric operator with eigen values 
given by the cube roots of unity, including complex 
conjugate pairs.

Eigen value and Eigenvector Analysis
The eigen values of R are λ1=1, λ2=e2πi/3,λ3=e4πi/3, 
where λ2 and λ3 are complex conjugates on the unit 
circle, indicating oscillatory flow. Corresponding 

eigenvectors for the complex eigen values are also 
complex and carry directional and cyclic information.

Feature Construction and Clustering
Using the eigenvector corresponding to λ2, we 
separate its real and imaginary parts to form a two-
dimensional feature vector for each state.
	 Applying k-means clustering with k=3 on these 
features results in partitioning states based on 
spectral flow patterns.

Results and Visualization
The clustering algorithm effectively groups each 
state into a distinct cluster, capturing the system’s 
underlying cyclic structure. A scatter plot of the states 
in the spectral feature space constructed from the real 
and imaginary components of the eigenvector shows 
clear separation between states, demonstrating the 
method’s capability to identify metastable flow 
clusters even in fully cyclic systems.

Extension to Larger Systems
Initial experiments on larger synthetic rheotrix 
matrices, incorporating noise and more intricate flow 
structures, show that the method reliably identifies 
metastable flow clusters. The complex eigenvalues 
and their associated eigenvectors capture critical 
information that conventional spectral clustering on 
symmetric matrices fails to reveal.

Summary
These experiments validate the effectiveness of 
the spectral clustering method based on rheotrix 
operators with complex eigenvalues in uncovering 
coherent flow patterns and metastable states within 
directed stochastic systems, underscoring its promise 
for wide-ranging applications in non-equilibrium 
dynamics. 

Conclusion
In this work, we presented a spectral clustering 
framework particularly designed for non-reversible 
stochastic systems represented by rheotrix operators 
with complex eigen values. Our method decomposed 
complex eigenvectors into their real and imaginary 
components that maps states into a real-valued 
feature space that preserves the system’s directional 
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and oscillatory flow information. With this method, 
we can uncover metastable flow clusters that 
conventional methods failed to detect. Through 
numerical experiments on cyclic rheotrix systems, 
we have demonstrated that our method successfully 
captures coherent cyclic structures and metastability 
in directed dynamics. Our algorithm focuses on the 
dominant spectral components, giving a balanced 
efficiency with so much of power in non-equilibrium 
systems. This work bridges an important gap in 
spectral analysis of non-reversible processes, and 
provide a versatile tool for a wide range of problems 
in statistical mechanics, network science, and beyond. 
Future work will focus on extending this framework 
to time-dependent rheotrix operators, improving 
robustness to noise, and exploring applications in 
large-scale complex systems.
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